Information Technologies for Epigraphy and Cultural Heritage
Proceedings of the First EAGLE International Conference
Contents

PART I – EPIGRAPHIC DATA:
MODELS, VOCABULARIES AND INTERACTIONS 21

1. A Conceptual Model for Inscriptions 23
 Vittore Casarosa, Paolo Manghi, Andrea Mannocci, Eydel Rivero Ruiz,
 Franco Zoppi
 1.1. Introduction 24
 1.2. EpiDoc and modern epigraphy 26
 1.3. Analysis in CIDOC-CRM 27
 1.4. The Aggregator Conceptual Model 31
 1.5. The EAGLE implementation 34
 1.6. Conclusions 38

2. Improving Text-Based Search of Inscriptions 41
 Michelangelo Ceci, Gianvito Pio, Anita Rocco
 2.1. Introduction 41
 2.2. Epigraphic text-based search in EDB 42
 2.3. Exploiting lemmatization to improve text-based search 43
 2.4. Conclusions and Future Work 47

3. From the LIMC Vocabulary to LOD 51
 Anne-Violaine Szabados
 3.1. Introduction 51
 3.2. Why the need for a controlled vocabulary? 52
 3.3. From a controlled vocabulary to a standards-compliant thesaurus 53
 3.4. ISO 25964 -compliant 58
 3.5. Linked Data : opening new ways 61
 3.6. Conclusion 63
4. Between Harmonization and Peculiarities of Scientific Domains 69
 Alessandra Avanzini, Annamaria De Santis, Daniele Marotta, Irene Rossi

 4.1. Studying the epigraphic heritage of ancient Arabia: overview of the project DASI 69
 4.2. Describing inscriptions 70
 4.3. Publishing digitized inscriptions 84
 4.4. Future developments 89

5. Epigraphy, Art History, Archaeology 95
 Antonio E. Felle, Norbert Zimmermann

 5.1. EDB and spatial data 95
 5.2. The Domitilla Project 97
 5.3. Interaction between EDB and Domitilla Projekt 102
 5.4. An example: the region of the Flavi Aurelii 103
 5.5. Conclusion 112

6. Inscriptions visual recognition 117
 Giuseppe Amato, Fabrizio Falchi, Fausto Rabitti, Lucia Vadicamo

 6.1. Introduction 117
 6.2. Related Work 119
 6.3. Tested approaches 119
 6.4. Experiments 121
 6.5. BoF with Geometric consistency checks 125
 6.6. Comparison 126
 6.7. Conclusions and Future Work 127

7. Morphological Residual Model 133
 Hugo Pires, João Fonte, Luis Gonçalves-Seco, Maria João Correia Santos, Orlando Sousa

 7.1. Introduction 133
 7.2. Data Capture 136
 7.3. Methodological Approach 136
 7.4. Visualization of M.R.M. results for epigraphic reading: four case-studies 138
 7.5. Conclusions and Future Work 141
8. Image Editing Programs as Tools for the Study of Ancient Inscriptions 145

Federico Frasson

8.1. Photos of inscriptions from Luna 145

8.2. Results 148

8.3. Conclusions 149

Part II – Translating epigraphy: challenges and research outcome 153

9. Attic Inscriptions Online (AIO) 155

Stephen Lambert, Finlay McCourt

9.1. Background to AIO 155

9.2. Target users of AIO 157

9.3. Key features of AIO 158

9.4. Technical aspects of AIO 161

9.5. Progress so far 162

9.6. Future plans and EAGLE context 162

10. Towards an EAGLE Standard in Translating Inscriptions 167

Francesca Bigi

10.1. Introduction 167

10.2. Translations: an innovation 167

10.3. An EAGLE vocabulary for translations? 168

10.4. A vocabulary: some suggestions 169

10.5. What is to be translated 170

10.6. Names 174

10.7. Offices and formularies 175

11. Translating Greek and Roman Inscriptions 179

Camilla Campedelli

11.1. Absence of the original context 181

11.2. Elliptical form of expression 181

11.3. Specific cultural lexicon 183
12. The EAGLE Mediawiki

Pietro Maria Liuzzo, Andrea Zanni, Luca Martinelli, Lorenzo Losa, Pietro De Nicolao

12.1. EAGLE and Wikimedia Italia
12.2. The EAGLE Mediawiki in place
12.3. Networking the Mediawiki
12.4. Future developments
12.5. Conclusions

Part III – Users, epigraphy and the social web

13. Epigraphy as a tool for learning Latin

Anja Ragolič

13.1. The Prežihov Voranc Primary School in Ljubljana
13.2. Research camps
13.3. Research papers
13.4. Research project Epigraphy
13.5. Guide to the lapidarium for primary schools
13.6. Conclusion

14. The Ashmolean Latin Inscriptions Project (AshLI)

Jane Masségia

14.1. A Neglected Corpus
14.2. Gauging the Needs of Users
14.3. Proposing a Solution: AshLI
14.4. The Team
14.5. At the end of our first year – what we’ve learned

15. (Digital) epigraphy as viewed by Romanian Archaeology/Classics Students

Rada Varga

15.1. Target groups and method
15.2. The survey
15.3. The general outline
15.4. Epigraphy and digital epigraphy
16. Meeting the Needs of Today’s Audiences of Epigraphy with Digital Editions 239
Laura Löser
16.1. A focus on purposes and needs 239
16.2. Aims in support of progressive development 242
16.3. Today’s diverse audiences for epigraphy 243
16.4. How to meet diverse needs with modern editorial means 246
16.5. Conclusions 250

17. #svegliamuseo 255
Francesca De Gottardo
17.1. The Project 255
17.2. The reaction of Italian museums and the #svegliamuseo community 258
17.3. Italian museums online: what has changed since 2013 and future developments 259

18. #DigitalInvasions 265
Elisa Bonacini, Marianna Marcucci, Fabrizio Todisco
18.1. Prosumers and new ways of cultural heritage dissemination through UGC 265
18.2. #DigitalInvasions: best practice of crowd cultural value co-creation 269
18.3. #DigitalInvasions2014: a massive digital phenomenon from Italy to the world 277
18.4. Cultural policies and socio-digital impacts of #DigitalInvasions projects 278

19. Archeowiki: enhancing archaeological heritage in Lombardy (Italy) with open-source strategies 285
Anna Antonini, Dante Bartoli, Sara Chiesa, Cristian Consonni, Rossella Di Marco, Sara Franco
19.1. Introduction 285
19.2. Digital archives for museums 286
19.3. Open Source initiatives in the cultural environment: ideas and examples 288
19.4. Wikipedia and Crowdsourcing initiatives in the cultural environment 291
19.5. Archeowiki project 294
19.6. Creative Commons licenses for cultural heritage protected by MIBACT: a viable solution 298
19.7. Chain reaction 302

 Alessandra Giovenco
20.1. An overview of Intellectual Property, copyright and copyleft 307
20.2. Are all works protected by copyright? Some thoughts on the Italian IP law 309
20.3. The BSR process for solving IPR questions 310
20.4. Images from the South Etruria collection (inscriptions located in Italy) 313
20.5. Images from the Libya collection (inscriptions located in Libya) 314
20.6. Translations from Libyan inscriptions 315
20.7. Conclusions 315

Part IV – Digital approaches to cross-disciplinary studies of inscriptions 317

21. Digital Marmor Parium 319
 Monica Berti, Simona Stoyanova
21.1. The Digital Marmor Parium Project 319
21.2. The Digital Marmor Parium 320

22. The Inscription between text and object 325
 Emmanuelle Morlock, Eleonora Santin
22.1. Introduction and purposes 325
22.2. Interaction between text and object: four possible configurations 328
22.3. Defining concepts: key entities for the material and textual dimensions 336
22.4. The encoding strategy of the IGLouvre project 342
22.5. Conclusions and perspectives 347

23. The IGCyR project 351
 Alice Bencivenni, Simone Agrimonti
23.1. The IGCyR project 351
23.2. A laboratory for encoding IGCyR: challenges and problems of a user engagement based markup 359

24. Latin Epigraphic Poetry Database Project 369
 Concepción Fernández Martínez, María Limón Belén
24.1. Introduction: The CLE Hispaniae Project 369
24.2. Objectives of the project 371
24.3. The CLE Hispaniae website: www.clehispania.com 371
24.4. Impending Project: the CLE Galliae 377

25. Paleographic Analysis of the Stone Monuments of Aquincum, Pannonia 381
 Nándor Agócs; István Gergő Farkas; Ádám Szabó, Ernő Szabó
25.1. Introduction 381
25.2. Methodology 384
25.3. The process of the project 384
25.4. Conclusion 392
25.5. The future of paleographical research in Pannonia 393

26. Low-cost Structure from Motion Technology 401
 Daniele Mittica, Michele Pellegrino, Anita Rocco
26.1. Introduction 401
26.2. Methodology 405
26.3. The workflow 409
26.4. Other reconstruction tools: Autodesk 123D Catch and Agisoft Photoscan 411
26.5. 3D model management: visualization and presentation 414
26.6. Conclusion and possible developments 414
27. Open-Access Epigraphy

Eleni Bozia, Angelos Barmpoutis, Robert S. Wagman

27.1. Introduction

27.2. Dissemination of 3D epigraphic content

28. Travelling back in Time to Recapture Old Texts

Maria João Correia Santos, Orlando Sousa, Hugo Pires, João Fonte, Luís Gonçalves-Seco

28.1. Introduction

28.2. Methodology

28.3. Travelling back in time to recapture old texts: four case studies

28.4. Towards some conclusions

29. The EPNet Project

José Remesal, Albert Díaz-Guilera, Bernardo Rondelli, Xavier Rubio, Antonio Aguilera, Daniel Martín-Arroyo, Alessandro Mosca, Guillem Rull

29.1. Setting the focus

29.2. An ongoing debate: the economy of Roman Empire

29.3. A groundbreaking vision

29.4. Innovation

30. A Multi-Layered Research on an Ancient Cypriot Inscription

Michalis Georgiou, Spyros Armostis, Sorin Hermon, Elena Christophorou, Valentina Vassallo

30.1. Introduction

30.2. The Eulalios inscription (AKGDC, E40)

30.3. 3D documentation of musical instruments

30.4. Metadata for Ancient Cypriot Inscriptions

30.5. Conclusions

A. Panels

A.1. Dealing with the Whole Object: the Archaeological Dimension of Epigraphy

A.2. Technology and tradition: a synergic approach to deciphering, analyzing and annotating epigraphic writings
A.3. Digital Humanities Publishing and Collaboration Strategies and Frameworks 483
A.4. Mobile Applications in Cultural Heritage 484
A.5. Linked Ancient World Data 486

B. List of Posters presented 487

C. List of authors 490
29. The EPNet Project

Production and distribution of food during the Roman Empire: Economics and Political Dynamics

José Remesal, Albert Díaz-Guilera, Bernardo Rondelli, Xavier Rubio, Antonio Aguilera, Daniel Martín-Arroyo, Alessandro Mosca, Guillem Rull

Abstract
The EPNet project aims to examine the framework of the Roman economic organisation and its networks by analysing epigraphical data from amphorae. This aim is to be realised through complex network analysis, model building and computer simulation. The objective is to create an experimental laboratory for the exploration, validation and refutation of historical theories, and the formulation of new ones.

Keywords
Amphora, epigraphy, big data, network, computer simulation, Roman economy, Roman policy.

29.1. Setting the focus
The EPNet project, which recently started (March 2014), aims to apply an innovative framework and groundbreaking vision to shed new light on the ongoing debate over the political and economic implications of the Roman trade system, its organization and dynamics. The Roman Empire trade system is generally considered to be the first complex European trade network. It formed an integrated network of interactions and interdependences between the Mediterranean basin and northern Europe. Over the last couple of centuries, several scholars have developed a variety of theories to explain the organization of the Roman Empire trade system. In this context, the study of food management still represents one of the main debates among the field specialists. However, due to the lack of suitable sources, these theories continue to be speculative and difficult to falsify [Garnsey et al. 1983, Lo Cascio 2000] especially due to the lack of a formal framework for the analysis of the available data.
The project intends to re-examine the framework of the economic organisation and its networks by re-analysing existing empirical data through complex network analysis, model building and computer simulation. The objective is to create an experimental laboratory for the exploration, validation and falsification of existing theories, and the formulation of new ones. This approach is made possible by (among other) a large dataset of Roman amphorae and their associated inscriptions [Fig. 29.1 - 29.3] created by the CEIPAC (Centro para el Estudio de la Interdependencia Provincial en la Antigüedad Clásica) in the last 22 years [Remesal Rodríguez et al. 2008] as well as by front line theoretical research done by José Remesal and his group in the political and economic aspects of the Roman trade system. The current version of the CEIPAC database is available at http://ceipac.ub.edu/.

The EPNet project team includes specialists from Social Sciences and Humanities and from Physical and Computer Sciences. These groups are all characterized by their transdisciplinary perspective and have a long experience at collaborating with specialists from different domains.

29.2. An ongoing debate: the economy of Roman Empire

A crucial aspect of any society is the production, supply and re-distribution of food. This topic has long been, and still remains, one of the open problems for sustainable decision policies in a world scale perspective. The food distribution during the Roman Empire is commonly associated with the control of the army. It is argued that the emperor and his circle managed the relationship between food and army in order to supervise and control the whole Roman territory and to strengthen and maintain their own political power.

Two approaches are particularly evident in the current debate over scales and modalities of the Roman economics system:

a the Roman Empire trade system as a specific model not connected with modern global economies

b the Roman Empire trade system as a sort of predecessor of modern global economies perfectly explainable through modern economic theories.

Assuming or not an analogy between past and present or vice versa, the scientific debate has focused mostly on the influence of the Empire
in long distance trade and it has not considered the role played by periphery and regional distribution.

Fig. 29.1. The result of searching for the stamp ACIRGI in the current version of the CEIPAC database. The first 10 occurrences of the stamp are shown (out of 140)

This said, the ongoing debate remains exclusively speculative and often based on rhetoric. Even recognizing the important role played by dialectic speculation and rhetoric argumentation in ancient history, we consider a different approach to be mandatory to move forward.

29.3. A groundbreaking vision

We propose to study the Roman economy by analysing food production and trade using a formal approach, focusing on the role played by regional distribution and periphery. We are not here defending a specific hypothesis against another, but we aim to contrast the several existing in a more experimental way.

Roman archaeology provides us with an incredible source of data and information about economic productions and transactions around modern Europe and the Mediterranean basin. However, a formal study of the mechanisms that have characterised these economic and political relations is still missing. The main reason is the lack of formal approaches in historical and archaeological contexts. Specialists from these disciplines often do not even consider the possibility that their research can be expressed using a formal language (a codified non-ambiguous grammar capable of generating models that can be solved,
by analytical or computational methods) such as that often used in the so-called “hard sciences”. On the contrary, ancient societies provide a great opportunity to evaluate diachronic real-world data with a virtual laboratory in which formal models can be built and different hypothesis and theories about the past explored [EPSTEIN 2008].

EPNet aims to use computer simulation as a virtual laboratory in which different techniques are exploited to encourage the formalization and falsification of scientific hypotheses about economic and political mechanisms of the Roman Empire trade network. Many practitioners of social and historical sciences continue to consider that it is not possible to reproduce “inside a computer” what past societies did and believed, because of the perceived complexity of the social, economic and political structures. Human behaviour is complex, however it is not the only complex system studied in sciences and many other systems have similar properties and behaviours to those of social structures [EPSTEIN et al. 1996]. Furthermore, complexity science and artificial intelligence have shown how the appropriate interconnection of very simple computational mechanisms is able to show extraordinary complex patterns, and now that access to distributed supercomputing (grid technologies) has become affordable, it is no longer possible to justify not applying these methods to the perceived complexity of the humanities and social sciences.

Computer simulation was first pioneered as a scientific tool in meteorology and nuclear physics just after World War II. Computer modelling and complex systems simulation have thereafter dominated the scientific debate, providing important outcomes in other sciences such as biology, environmental and life sciences. The humanities, and especially archaeology, have been lagging behind this trend and only few research groups worldwide have developed or are currently developing research programs in this direction [LAKE 2000, KOHLER et al. 2007]. However, the results are extremely promising and we think that simulation technologies have the potential to become an essential tool in the field.

In archaeology, computer simulation has been applied to study mainly prehistoric societies and rarely to explore ancient history and more recent societies. EPNet aims to fill this gap: we aim to model and simulate Roman trade networks, the paradigm of past complex trade networks. Most of the actual social simulations define a basic society through a so-called “toy” model, where a simple set of rules
is defined in order to explore the interaction between the different possible behaviours of the agents. We aim at expanding this approach to virtual societies with complex interactions in order to explore the role and weight assumed by different aspects (parameters) and mechanisms (behaviours), which different theories have proposed or are proposing as fundamental and explanatory. Existing datasets and new data gathered during the project provide the opportunity to validate the simulation experiments with empirical data. Correlation between simulation experiments (driven by existing theories) and empirical data allows a more critical evaluation of the existing explanations as well as the possible discovery of the role played by underestimated values. In addition, computer simulation of social phenomena allows the researcher to detect important relations between parameters and behaviour that can be hidden if the system is studied by classical approaches.

29.4. Innovation
The project is articulated through three main innovative aspects. None is “new” by itself, but the combination of them represents an unexplored aspect, determining the originality and also the risk of this research.
Fig. 29.3. Titulus pictus in delta position over Dressel 20 amphora. [R A]stigis arca p(endo) ccxl / [act]us agatephori · p(ensit) · atimetion / [d(omino)] n(ostro) antonino iii et comazonte co(n)s(ulibus) [222 A.D.]

29.4.1. To explore our dataset using an exhaustive semantic approach

Semantic approaches can account for discrete data in addition to qualitative influences, so as to answer broader questions about motives and patterns of behaviour. In that perspective, a semantic model consists of a network of concepts and the relationships between those concepts. The concepts and relationships together are often known as ontology. Semantic models enable users to ask questions about the information in a natural way and help identifying patterns and trends in this information and discover relationships between disparate pieces of it. The extensive data provided by the CEIPAC database is to be connected and subsequently interpreted in a variety of levels that will give new insight to the complexity of exchange relations in the Roman Empire by moving beyond the limitations of a simple relational database. We consider this aspect essential for the generation of new knowledge about the object of study and for the definition of values and parameters that will be integrated in the simulation experiments.

In the current initial phase of the project, we are exploring and adapting existing ontologies from the domain of epigraphy with the aim to develop such a semantic model for the CEIPAC database. In this direction, the work done by the EAGLE project [Orlandi et al. 2014] is being very helpful. We intend to reuse as much of the EAGLE’s ontology as possible, not just because it is already based on solid standards such as CIDOC-CRM [Crofts et al. 2011] and Epidoc [Elliott et al. 2007], but also to leave open the possibility of a future incorporation to the Eagle federation of epigraphy databases.
29.4.2. To apply network theory to the analysis of existing data

Complex networks have become a very active field of research in the last decade, providing a common language, which tools can have a wide range of applications. A clear example of this is the application of complex networks in economy in general, and trade in particular. Examples of trade between companies or banks, and even between countries have been the subject of intense research in the last years. We aim to extend this characterization of trade networks for current economic data to the ancient trade network of some of the most basic products of Mediterranean diet (wine, oil and salsamenta). Historically, wine and oil network distributions were complementary. On the one hand, oil was a strongly controlled good and produced in a single region (first in the Bética and later on in the Roman province of Africa) to be then transported to the most distant corners of the Empire. On the other hand, wine production escaped from state control and was hence distributed from many different sources all across the empire. The complementarity of these two networks, together with new techniques developed in the complex network community to infer real networks from empirical data, is to be exploited to obtain a global image of food distribution throughout the whole Empire.

29.4.3. To use agent-based simulation to analyze the structures and dynamics of the Roman Empire trade network

The project aims to implement computer simulation as a tool to explore research hypotheses. Complex network analysis can generate several ideas about the dynamics of the system, but we need additional techniques to understand complex social spatiotemporal patterns such as those involved in Roman trade. Agent-Based Modelling is a particular type of computer simulation specialised in exploring problems which entities are capable of executing decision-making processes. These entities, the agents, interact both with other entities and with the virtual world where they live (the environment). The different processes are executed in a sequential series of regular time steps in order to check the evolution of the model over time. This mechanism can produce a chain of events capable of modifying the system and enabling new behavioural patterns to emerge from a bottom-up perspective, portraying complex qualities (the system as a whole exhibits traits that were not defined in the individual parts). By modifying and improving the
simulation we can produce data suitable to be compared with our empirical one, in such a way that this shows us the most probable historical situation. Moreover, this way we can improve the understanding of the interaction between local and large-scale trade interactions.

Remesal Rodríguez, J., P. Berni Millet, and A. Aguilera Martín (2008). “Amphoreninschriften und hire elektronische Bearbeitung”. In: In-
This peer-reviewed volume contains selected papers from the First EAGLE International Conference on Information Technologies for Epigraphy and Cultural Heritage, held in Paris between September 29 and October 1, 2014. Here are assembled for the first time in a unique volume contributions regarding all aspects of Digital Epigraphy: Models, Vocabularies, Translations, User Engagements, Image Analysis, 3D methodologies, and ongoing projects at the cutting edge of digital humanities. The scope of this book is not limited to Greek and Latin epigraphy; it provides an overview of projects related to all epigraphic inquiry and its related communities. This approach intends to furnish the reader with the broadest possible perspective of the discipline, while at the same time giving due attention to the specifics of unique issues.

Silvia Orlandi is professor of Latin Epigraphy at the Department of Classics, Sapienza, University of Rome and Scientific Coordinator of EAGLE, Europeana network of Ancient Greek and Latin Epigraphy. Raffaella Santucci is a researcher at DigiLab, Sapienza, University of Rome. Her professional interests hinge on the potential of technologies for the enhancement of research in the arts and humanities. Vittore Casarosa is a research associate at CNR-ISTI and contract professor of Digital Libraries at the University of Pisa. Pietro Liuzzo is a researcher at the University of Heidelberg.

EAGLE The Europeana network of Ancient Greek and Latin Epigraphy is a best-practice network co-funded by the European Commission under its Information and Communication Technologies Policy Support Programme. EAGLE provides a single user-friendly portal to the inscriptions of the Ancient World, a massive resource for both the curious and for the scholarly.